

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/bsdf/checkouts/latest/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/bsdf/checkouts/latest/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

Index

Binary Structured Data Format

The Binary Structured Data Format [http://almarklein.gitlab.io/bsdf] (BSDF)
is an open specification for serializing (scientific) data, for the
purpose of storage and (inter process) communication.

It’s designed to be a simple format, making it easy to implement in
many programming languages. However, the format allows implementations
to support powerful mechanics such as lazy loading of binary data, and
streamed reading/writing.

BSDF is a binary format; by giving up on human readability, BSDF can be simple,
compact and fast. See the full specification, or
how it compares to other formats.

Data types and extensions

BSDF supports 8 base types: null, booleans, integers, floats, strings/text,
(heterogenous) lists, mappings (i.e. dictionaries), and binary blobs. Integers
and floats represent 64 bit numbers, but can be encoded using less
bytes. Binary blobs can optionally be compressed (zlib or bz2), can have
checksums, and can be resized.

Via an efficient extension mechanism, other data types (including custom
ones), can be serialized. The standard extensions work out
of the box, supporting e.g. nd-arrays and complex numbers.

Status

Things are taking shape quickly, but at this point I still take the right to change
the spec without notice. Once I’ve collected some initial feedback, the spec
will be stable (before 2018). There are a few tasks left (#7) before I consider
it “mature”.

Implementations

Implementations currently exist for multiple languages. Each implementation is
continuously tested [https://gitlab.com/almarklein/bsdf/pipelines] to ensure compatibility.

	The Python implementation in the form of bsdf.py.

	The lite Python implementation in the form of bsdf_lite.py.

	The Matlab / Octave implementation in the form of bsdf.m.

	The JavaScript implementation in the form of bsdf.js.

We’d like implementations for other languages (such as R and Julia).
BSDF is designed to be easy to implement; perhaps you want to
contribute?

Installation

See the specific implementations for detailed installation instructions.
Most implementations consist of a single file.

Examples

In Python:

>>> import bsdf
>>> b = bsdf.encode(['just some objects', {'foo': True, 'bar': None}, 42.001])
>>> b
b'BSDF\x02\x00l\x03s\x11just some objectsm\x02\x03fooy\x03barvd\xe3\xa5\x9b\xc4 \x00E@'
>>> len(b)
48
>>> bsdf.decode(b)
['just some objects', {'foo': True, 'bar': None}, 42.001]

In JavaScript:

> bsdf = require('bsdf.js')
{ encode: [Function: bsdf_encode],
 decode: [Function: bsdf_decode] }
> b = bsdf.encode(['just some objects', {foo: true, bar: null}, 42.001])
ArrayBuffer { byteLength: 48 }
> bsdf.decode(b)
['just some objects', { foo: true, bar: null }, 42.001]

In Matlab / Octave:

>> b = bsdf({'just some objects', struct('foo', true, 'bar', []), 42.001});
>> size(b)
ans =
 48 1
>> bsdf(b)
ans =
{
 [1,1] = just some objects
 [1,2] =

 scalar structure containing the fields:

 foo = 1
 bar = [](0x0)

 [1,3] = 42.001
}

It is worth noting that although different languages may represent data types
in slightly different ways, the underlying bytes in BSDF are the same. This makes
BSDF suited for inter-language communication.

License

In principal, all implementations in the BSDF repository use the
2-clause BSD license (see LICENSE for details), unless otherwise
specified. All code is liberally licensed (BSD- or MIT-like).

Contributing to BSDF

There are several ways that you can contribute to BSDF. From contributing
bugs in the issue tracker [https://gitlab.com/almarklein/bsdf/issues], to
providing fixes and improvements, or even contributing new implementations.

Organization of the code

Since BSDF is designed to be simple, implementations are usually
restricted to a single module. The BSDF Gitlab repo [https://gitlab.com/almarklein/bsdf]
contains implementations for several languages, organized in sub
directories. This allows testing each implementation using a “test
service”, and ensures compatibility between the different
implementations.

Development dependencies

The tooling around BSDF is implemented in Python. For development, you
need Python 3.x and the invoke library (pip install invoke).

To run tasks such as tests, run invoke from the root repo to get
started.

Workflow

To start contributing an enhancement or new implementation, please start
by making an issue to start the discussion. The actual code will be
contributed via pull requests.

It is expected that each implementation will be more or less maintained by
its own group of contributors.

Code of conduct

BSDF does not have an official code of conduct yet, but let’s just say
that we expect respect from and towards all contributors, and will not
tolerate discrimination or trolling.

BSDF extensions

BSDF can encode special kinds of data by providing the serializer with
extensions. How users specify extensions is specific to the
implementation, but they will typically consist of 4 elements:

	A name to identify it with. This will be encoded along with the data,
so better keep it short, although custom extensions are best prefixed with
the context (e.g. ‘mylibrary.myextension’), to avoid name clashes.

	A type and/or a match function, so that the BSDF encoder can determine
what objects must be serialized.

	An encoder function to convert the special object to more basic objects.

	A decoder function to reconstruct the special object from the basic objects.

How it works

Extensions encode a high level data types into more basic data types, such
as the base BSDF types, or types supported by other extensions. Upon decoding,
the extension reconstructs the high level data from the “lower level” data.
When an extension is not available during decoding, a warning is produced,
and the object is represented in its underlying basic form.

Extensions add very little overhead in speed (unlike e.g. JSON). In terms
of memory, each object being converted needs a little extra memory to encode
the extension’s name.

Kinds of extensions

Everyone can write their own extension and use it in their own work.

The purpose of this document is to specify ways to convert common data types,
and how these extensions should be named. If everyone adheres to these
specifcations, data will be easier to share.

BSDF also defines a small set of standard extensions, which users are stongly
encouraged to follow, and which all BSDF implementations are encouraged
to support by default.

Status

This is a work in progress and the specifications below are subject to change.
The standardization of a base set of extensions should settle soonish after the
BSDF format itself has stabilized.

Standard extensions

Complex numbers

	name: “c”

	encoding: a list with two elements (the real and the imaginary part).

N-dimensional arrays

	name: “ndarray”

	encoding: a dict with elements:
	‘dtype’, a string that specifies the data type. Minimal support
should be ‘uint8’, ‘int8’, ‘uint16’, ‘int16’, ‘uint32’, ‘int32’,
‘float32’, and preferably ‘uint64’, ‘int64’ and ‘float64’.

	‘shape’, a list with as many elements (integers) as the array has
dimensions. The first changing dimension first.

	‘data’, a blob of bytes representing the contiguous data.

We might add an “order” field at a later point. This will need to be
investigated/discussed further. Until then, C-order (row-major) should
be assumed where it matters.

Other extensions

2D image data

	name: ‘image2d’

	encoding: a 2D or 3D ndarray

If the data is 3D, it has shape[-1] channels.

3D image data

	name: ‘image3d’

	encoding: a 3D or 4D ndarray

If the data is 4D, it has shape[-1] channels.

Comparison with other formats

The question that arises with any new format:
Why, oh Why? Why yet another format!?

In short, there was no format that could serialize nd-array data well,
and also work well on the web. The realization that HDF5 is not so great,
a strong need to send scientific data between Python and JavaScript, and
a repeated annoyance with JSON has nudged me to create BSDF.

This page tries to compares BSDF with other formats, and explains
why these formats were in my view insufficient for my needs.

BSDF vs JSON

Although JSON [http://www.json.org/] is very widely used, it has several limitations:

	JSON’s inability to encode nan and inf can be painful.

	No support for binary data or nd-arrays (base64 is a compromise worth avoiding).

	It’s kind of human readable, but very verbose, and not easy to write
(e.g. a comma after the last item in a list breaks things).

	Many JSON implementations allow extending the types, but this involves
an extra function call for each element, which degrades the performance.

BSDF vs UBJSON et al.

Binary formats commonly used on the web that were considered are
ubjson [http://ubjson.org/], msgpack [http://msgpack.org/], bson [http://bsonspec.org/].
Most are rather web-oriented, or adhere strictly to JSON compatibility (e.g.
no nan). Most do not support typed arrays, let alone nd-arrays, and/or
decode such arrays in JavaScript as regular arrays instead of array
buffers. In short; none of these seemed to provide the flexibility that
a scientific data format needs.

BSDF differs from most of them by its flexibility for encoding binary data,
and its simple extension mechanism.

It’s worth noting that BSDF does not support typed arrays as one of its base
types, but the extension for typed nd-arrays is a standard extension available
in most implementations.

BSDF vs HDF5

HDF5 [https://en.wikipedia.org/wiki/Hierarchical_Data_Format] is a popular format for
scientific data, but there are also good reasons to avoid it, as e.g. explained the
paper on ASDF [http://linkinghub.elsevier.com/retrieve/pii/S2213133715000645]
and this blog post [http://cyrille.rossant.net/should-you-use-hdf5/].
Summarizing:

	HDF5 is a complex specification and (therefore) there is really just one
implementation that actually works.

	The implementation sometimes has bugs or performance issue, but there
are no alternatives.

	Not human readable, and no other tools for inspection except that one
implementation.

	No proper mappings (dicts) and lists.

HDF5 is certainly more flexible, e.g. with regard to providing lazy
loading parts of compressed data. However, BSDF does support resizing
of binary data, in-place editing, lazy loading, and streamed reading and
writing.

BSDF vs ASDF

The ASDF format [http://asdf-standard.readthedocs.io/] has
goals that partly overlap with the purpose of BSDF:

	intrinsic hierarchical structure

	human readable

	based on existing data format (yaml)

	support for references (also to external objects)

	efficient updating

	machine independent, structured data, ndarrays

	support for writing (and reading) streams

	explicit versioning

	explicit extensibility without interference

	support for validation with schemas

ASDF was seriously considered before the development on BSDF started.
The idea of a human readable format is appealing, but ...

	Yaml is a rather ill defined format that is hard to parse, which is
probably why the parser is so slow.

	Data that consist of many elements (but not so much blobs) will be encoded
inefficiently.

	Many text editors won’t deal well with huge text files.

	If the text is edited, byte alignments are likely to break.

	It makes the format more complex (you basically have two formats).

This is why BSDF drops human readability, gaining a format that
is simple, compact, and fast to parse. This is not to say that
ASDF did it wrong; it is very suited for what it was designed
for. But BSDF is more suited for e.g. inter process communication.

BSDF vs Arrow

The goals of Apache Arrow [https://arrow.apache.org/] bear similarities with
BSDF, with e.g. a clear standard and zero copy reads. However, it’s
rather focussed on columnar data (where BSDF supports nd-arrays), and
seems oriented at compiled languages, i.e. less flexible. Although the
specification looks easy to read, the Python implementation is much
larger than BSDF’s 800 or so lines of code. It’s also not pure Python, making
it nontrivial to install on less common Python versions/implementations.

BSDF vs NPZ

Numpy has a builtin way to encode typed arrays. However, this is limited to
arrays (no meta data), and rather specific to Python.

BSDF vs SSDF (and BSDF v1)

Around 2011 I developed a human readable file format called
SSDF [https://bitbucket.org/almarklein/ssdf], suited for storing
hierachical data, similar to JSON, but with support for nan and inf.
It also supports nd-arrays, via base64 encoding and zlib compression.
I’ve used this in several (scientific) projects (e.g. it was used in
the Pyzo IDE [http://github.com/pyzo/pyzo] to store config data).
Although it does serve its purpose, its not terribly good for large
binary datasets. I also kept coming back in need of a format to send
binary data to/from JS, where compression is a problem.

At some point I developed a binary equivalent of SSDF that’s fully
compatible, but stored binary data more effectively. The current BSDF
format can be seen as its successor, being both simpler and more
extensible. This is also why BSDF’s version number starts at 2.

I am currently of the opinion that a format that is good at binary data
can not also be good at being a human readable config format. Therefore
I created ZON [https://bitbucket.org/pyzo/pyzolib/src/tip/zon], which
is completely compatible with SSDF, except that it does not support
binary data.

BSDF format specification

Purpose and features

The purpose of BSDF is to provide a data format that is ...

	easy to implement, such that it can easily spread to other programming languages.

	suitable for working with binary (scientific) data.

	suitable for inter process communication and the web.

This has resulted in the following features:

	A binary format that has a simple specification.

	Language agnostic and machine independent.

	Compact storage.

	Fast encoding and decoding. E.g. the pure Python implementation has
a respectable speed, and can be made faster via e.g. a C implementation.

	Support for binary blobs, in uncompressed format or compression with zlib or bz2.

	Uses data types that are widely supported in most languages.

	Provides a mechanism to easily convert to/from special data types,
with minimal effect on performance, also accross languages.

	Data can be read and written without seek operations (e.g. to allow
(streamed) reading from remote resources).

	Zero copy reads (in uncompressed data, bytes are aligned).

	Implementations can provide direct access to blobs via a file-like
object for lazy loading or efficient updating.

	Provides a way to stream data (e.g. as a list at the end of the
file that can simply be appended to).

Also see how BSDF compares to other formats.

Minimal implementation

A minimal BSDF implementation must support:

	the basic data types: null, bool, int, float, string, list, mapping,
and uncompressed binary blobs.

	reading unclosed streams (at the end of a data structure).

	preferably most standard extensions.

Implementations are encouraged to support:

	support user-defined extensions.

	compressed binary blobs (zlib and bz2).

Further implementations can be made more powerful by supporting:

	Lazy loading of blobs.

	Lazy loading of streams.

	Deferred writing of streams.

The format

Each data value is identified using a 1 byte character in the ASCII
range. If this identifier is a capital letter (smaller than ASCII 95),
it means that it’s a value to be converted via an extension. If so, the next
item is a string (see below for its encoding) representing the extension name.
Next is the data itself. All words are stored in little endian format.

Encoding of size

Sizes (of e.g. lists, mappings, strings, and blobs) are encoded as
follows: if the size is smaller than 251, a single byte (uint8) is used.
Otherwise, the first byte is 253, and the next 8 bytes represent the
size using an unsigned 64bit integer. (The byte 255 is used to identify
streams, and 251-254 are reserved.)

Header

Data encoded with BSDF starts with the following 6-byte header:

	4 Identifier bytes: ASCII BSDF, equivalent to 1178882882 little endian.

	Two variable size unsigned integers (uint8 in practice, assuming version
number are smaller than 251) indicating major and minor version
numbers. Currently 2 and 0.

null

The value null/nil/none is identified by v (for void), and has no data.

booleans

The values false and true are identified by n for no, and y for yes,
respectively. These values have no data.

integers

Integer values come it two flavours:

	h: small values (between -32768 and 32768, inclusive) can be encoded using int16.

	i: int64

floats

Floats values follow the IEEE 754 standard, can be NaN and inf and
come in two flavours:

	f: a 32bit float

	d: a 64bit float

strings

String values are identified by s (for string), and consists of a
size item (1 or 9 bytes), followed by the bytes that represents the
UTF-8 encoded string.

blobs

Binary data is encoded as follows:

	char b (for blob)

	uint8 value indicating the compression. 0 means no compression, 1 means zlib,
2 means bz2.

	allocated_size: the amount of space allocated for the blob, in bytes.

	used_size: the amount of used space for the blob, in bytes.

	data_size: the size of the blob when decompressed, in bytes. If compression
is off, it must be equal to used_size.

	Optonal checksum: a single byte 0x00 means no hash, a byte 0xFF means that
there is, and is followed by a 16-byte md5 hash of the used (compressed) bytes.

	Byte alignment indicator: a uint8 number (0-7) indicating the number of bytes
to skip before the data starts.

	Empty space: n empty bytes, as indicated by the byte alignment indicator.

	The binary blob, used_size bytes.

	Empty space, allocated_size minus used_size bytes.

lists

List values consist of the identifier l (for list), followed by a size item that
represents the length of the list n. After that, n values follow, which
can be of any type.

mappings

Mappings, a.k.a. dictionaries or structs, consists of the identifier
m (for mapping), followed by a size item that represents the length
of the mapping n. After that, n items follow, each time a combination
of a string that represents the key, and the value itself.

Streaming

Streams allow data to be written and read in a “lazy” fashion.
Implementations are not required to support streaming itself, but must
be able to read data with (unclosed) streams.

Data that is “streaming” must always be the last object in the file
(except for its sub items). BSDF currently specifies that streaming is
only supported for lists. It will likely also be added for blobs.

Streams are identified by the size encoding which starts with 255,
followed by an unsigned 64 bit integer. This allows to later “close”
the stream by changing the 255 to 253 and writing the real size in the next 8
bytes.

BSDF Julia implementation

TODO, need help!

BSDF Matlab/Octave implementation

This is the implementation of the BSDF format for Matlab/Octave. It’s
in good shape and well tested. Though it could do with some love from
a Matlab expert to optimize the code and/or improve the implementation,
e.g. by allowing custom extensions.

Installation

Download bsdf.m and place it in a directory where Matlab can find it,
e.g. by doing:

addpath('/path/to/bsdf');

Usage

Functionality is provided via a single bsdf function:

data = bsdf(filename) % to load data from file
data = bsdf(bytes) % to load data from bytes
bsdf(filename, data) % to save data to file
bytes = bsdf(data) % to serialize data to bytes (a uint8 array)

Options (for writing) can be provided via argument pairs:

	compression: the compression for binary blobs, 0 for raw, 1 for zlib
(not available in Octave).

	float64: whether to export floats as 64 bit (default) or 32 bit.

	use_checksum: whether to write checksums for binary blobs, not yet
implemented.

 This is copied from Jsonlab: https://github.com/fangq/jsonlab, and is only
used to run the tests that import export data as json. The code has been
tweaked a little bit to better support Unicode.

BSDF R implementation

TODO, need help!

BSDF Python lite implementation

This is a lightweight implementation of BSDF in Python. Fully functional
(including support for custom extensions) but no fancy features like lazy
loading or streaming. With less than 500 lines of code (including docstrings)
this demonstrates how simple a BSDF implementation can be.
See also the complete version of BSDF in Python.

Installation

Copy bsdf_lite.py to a place where Python can find it.
There are no dependencies except Python 3.4+.

Usage

import bsdf_lite

Setup a serializer with extensions and options
serializer = bsdf_lite.BsdfLiteSerializer(compression='bz2')

Use it
bb = serializer.encode(my_object1)
my_object2 = serializer.decode(bb)

Reference

class BsdfLiteSerializer(extensions=None, **options)

Instances of this class represent a BSDF encoder/decoder.

This is a lite variant of the Python BSDF serializer. It does not support
lazy loading or streaming, but is otherwise fully functional, including
support for custom extensions.

It acts as a placeholder for a set of extensions and encoding/decoding
options. Options for encoding:

	compression (int or str): 0 or “no” for no compression (default),
1 or “zlib” for Zlib compression (same as zip files and PNG), and
2 or “bz2” for Bz2 compression (more compact but slower writing).
Note that some BSDF implementations (e.g. JavaScript) may not support
compression.

	use_checksum (bool): whether to include a checksum with binary blobs.

	float64 (bool): Whether to write floats as 64 bit (default) or 32 bit.

method add_extension(extension_class)

Add an extension to this serializer instance, which must be
a subclass of Extension.

method remove_extension(name)

Remove a converted by its unique name.

method encode(ob)

Save the given object to bytes.

method save(f, ob)

Write the given object to the given file object.

method decode(bb)

Load the data structure that is BSDF-encoded in the given bytes.

method load(f)

Load a BSDF-encoded object from the given file object.

class Extension()

Base class to implement BSDF extensions for special data types.

Extension classes are provided to the BSDF serializer, which
instantiates the class. That way, the extension can be somewhat dynamic:
e.g. the NDArrayExtension exposes the ndarray class only when numpy
is imported.

A extension instance must have two attributes. These can be attribiutes of
the class, or of the instance set in __init__():

	name (str): the name by which encoded values will be identified.

	cls (type): the type (or list of types) to match values with.
This is optional, but it makes the encoder select extensions faster.

Further, it needs 3 methods:

	match(value) -> bool: return whether the extension can convert the
given value. The default is isinstance(value, self.cls).

	encode(value) -> encoded_value: the function to encode a value to
more basic data types.

	decode(encoded_value) -> value: the function to decode an encoded value
back to its intended representation.

BSDF Python implementation

This is the reference implementation of BSDF, with support for streamed
reading and writing, and lazy loading of binary blobs. See also the
minimal version of BSDF in Python.

Installation

At this point, copy bsdf.py to a place where Python can find it.
There are no dependencies except Python 2.7 or Python 3.4+.

Usage

Simple use:

import bsdf

Encode
bb = bsdf.encode(my_object)

Decode
my_object2 = bsdf.decode(bb)

Advanced use:

import bsdf

class MyFunctionExtension(bsdf.Extension):
 """ An extension that can encode function objects and reload them if the
 function is in the global scope.
 """
 name = 'my.func'
 def match(self, f):
 return callable(f)
 def encode(self, f):
 return f.__name__
 def decode(self, name):
 return globals()[name] # in reality, one would do a smarter lookup here

Setup a serializer with extensions and options
serializer = bsdf.BsdfSerializer([MyFunctionExtension],
 compression='bz2')

def foo():
 print(42)

Use it
bb = serializer.encode(foo)
foo2 = serializer.decode(bb)

foo2() # print 42

Reference

function encode(ob, extensions=None, **options)

Save (BSDF-encode) the given object to bytes.
See BSDFSerializer for details on extensions and options.

function decode(bb, extensions=None, **options)

Load a (BSDF-encoded) structure from bytes.
See BSDFSerializer for details on extensions and options.

function save(f, ob, extensions=None, **options)

Save (BSDF-encode) the given object to the given filename or
file object. SeeBSDFSerializer for details on extensions and options.

function load(f, extensions=None, **options)

Load a (BSDF-encoded) structure from the given filename or file object.
See BSDFSerializer for details on extensions and options.

class BsdfSerializer(extensions=None, **options)

Instances of this class represent a BSDF encoder/decoder.

It acts as a placeholder for a set of extensions and encoding/decoding
options. Use this to predefine extensions and options for high
performance encoding/decoding. For general use, see the functions
save(), encode(), load(), and decode().

This implementation of BSDF supports streaming lists (keep adding
to a list after writing the main file), lazy loading of blobs, and
in-place editing of blobs (for streams opened with a+).

Options for encoding:

	compression (int or str): 0 or “no” for no compression (default),
1 or “zlib” for Zlib compression (same as zip files and PNG), and
2 or “bz2” for Bz2 compression (more compact but slower writing).
Note that some BSDF implementations (e.g. JavaScript) may not support
compression.

	use_checksum (bool): whether to include a checksum with binary blobs.

	float64 (bool): Whether to write floats as 64 bit (default) or 32 bit.

Options for decoding:

	load_streaming (bool): if True, and the final object in the structure was
a stream, will make it available as a stream in the decoded object.

	lazy_blob (bool): if True, bytes are represented as Blob objects that can
be used to lazily access the data, and also overwrite the data if the
file is open in a+ mode.

method add_extension(extension_class)

Add an extension to this serializer instance, which must be
a subclass of Extension.

method remove_extension(name)

Remove a converted by its unique name.

method encode(ob)

Save the given object to bytes.

method save(f, ob)

Write the given object to the given file object.

method decode(bb)

Load the data structure that is BSDF-encoded in the given bytes.

method load(f)

Load a BSDF-encoded object from the given file object.

class Extension()

Base class to implement BSDF extensions for special data types.

Extension classes are provided to the BSDF serializer, which
instantiates the class. That way, the extension can be somewhat dynamic:
e.g. the NDArrayExtension exposes the ndarray class only when numpy
is imported.

A extension instance must have two attributes. These can be attribiutes of
the class, or of the instance set in __init__():

	name (str): the name by which encoded values will be identified.

	cls (type): the type (or list of types) to match values with.
This is optional, but it makes the encoder select extensions faster.

Further, it needs 3 methods:

	match(value) -> bool: return whether the extension can convert the
given value. The default is isinstance(value, self.cls).

	encode(value) -> encoded_value: the function to encode a value to
more basic data types.

	decode(encoded_value) -> value: the function to decode an encoded value
back to its intended representation.

BSDF tools

This directory contains the tooling, e.g. to run the same test suite on
all BSDF implementations. This code is written in Python (some may only
work on Python 3.x).

BSDF Javascript implementation

This implementation of BSDF is intended for use in NodeJS or the browser.
It is a “lite” implementation, without support for e.g. lazy loading
or streaming.

Installation

Include bsdf.js in your project.

Usage

Basic usage:

var bsdf = require('bsdf.js');
var data1 = ...
var bytes = bsdf.encode(data1); // produces an ArrayBuffer
var data2 = bsdf.decode(bytes); // bytes can be ArrayBuffer, DataView or Uint8Array.

Full example using extensions:

// A class that we want to encode
function MyOb(val) {
 this.val = val;
}
// The extension that can encode/decode it
var myext = {name: 'test.myob',
 match: function (v) { return v instanceof MyOb; },
 encode: function (v) { return v.val; },
 decode: function (v) { return new MyOb(v); }
 };
// Determine extensions to use (include standard ones)
var extensions = Array.concat(bsdf.standard_extensions, [myext]);
// Encode and decode
var data1 = new MyOb(42);
var bytes = bsdf.encode(data1, extensions);
var data2 = bsdf.decode(bytes); // -> the raw value, 42
var data3 = bsdf.decode(bytes, extensions); // a MyOb instance with value 42

A note on encoding of bytes

During encoding, ArrayBuffer or DataView objects are consumed as bytes,
while Uint8Array objects as typed arrays.

During decoding, byte objects are represented as DataView objects, which can
in turn be mapped to arrays with e.g.
a = new Uint8Array(bytes.buffer, bytes.byteOffset, bytes.byteLength).
If needed, a copy can be made with a = new Uint8Array(a).

 _static/minus.png

_static/file.png

_static/ajax-loader.gif

_static/up-pressed.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

_static/down.png

nav.xhtml

 Table of Contents

 		Welcome to Read the Docs

_static/down-pressed.png

_static/comment.png

_static/plus.png

